

ML on FPGA for Event Selection

Sergey Furletov

Jefferson Lab

Workshop AI4EIC-Exp

9 Sep 2021

Motivation

- With increase of luminosity for accelerator colliders as well as a granularity of detectors for particle physics, more challenges fall on the readout system and data transfer from detector front-end to computer farm and long term storage.
- EIC concept of trigger-less readout and data streaming will produce large data volumes being read from the detectors.
- From a resource standpoint, it makes much more sense to perform data pre-processing and reduction at early stages of data streaming. Would allow to use information-rich data sets for event selection.

- CMS bandwidth: Phase-2 ~50 Tb/s (1.8TB/s in Phase-1)
- The task of the real-time processing is to filter events to reduce data rates to manageable levels for offline processing.
- Level-1 typically uses custom hardware with ASICs or FPGAs (decision \sim 4 μ s)
- The second stage of triggering, High Level Trigger (HLT), uses commercial CPUs to process the filtered data in software. (decision \sim 100 000 μ s)

Current CMS Data Processing 1 kHz 1 MB/evt 1 Trigger (software) 1 Decision in ~100 ms 99.75% rejected 3 As

Machine Learning Inference with FPGAs

Reconstruction, Trigger, and Machine Learning for the HL-LHC @ MIT April 26th, 2018

After trigger, 99.99975% of events are gone forever!

Motivation

- The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real time data processing.
- Many tasks could be solved using modern Machine Learning (ML) algorithms which are naturally suited for FPGA architectures.

Level 1 works with Regional and sub-detector **Trigger primitives**

Using ML on FPGA many tasks from Level 2 and/or Level 3 can be performed at Level 1

Fast Machine Learning, 10-13 September 2019, Fermilab

9/9/21 Sergey Furletov

ML in physics

- ◆ Machine learning methods are widely used and have proven to be very powerful in particle physics.
- ◆ Although the methods of machine learning and artificial intelligence are developed by many groups and have a lot in common, nevertheless, the hardware used and performance is different:
 - 1) CPU only (farm)
 - 2) CPU and GPU accelerator
 - 3) CPU and FPGA accelerator
 - 4) pure FPGA
- ♦ While the large numerical processing capability of GPUs is attractive, these technologies are optimized for high throughput, not low latency.
- ◆ FPGA-based trigger and data acquisition systems have extremely low, sub-microsecond latency requirements that are unique to particle physics.
- ◆ Definitely FPGA can work on a computer farm as an ML accelerator, but the internal FPGA performance will be degraded due to slow I/O through the computer and the PCIe bus. Not to mention the latency, which will increase by 2-3 orders of magnitude.
- ◆ Therefore, the most effective would be the use of ML-FPGA directly between the front-end stream and a computer farm, on which it is already more efficient to use the CPU and GPU for ML/AI.

EIC readout

- ★ The correct location for the ML on the FPGA filter is called "FEP" in this figure.
- ★ This gives us a chance to reduce traffic earlier.
- Allows us to touch physics: ML brings intelligence to L1.
- However, it is now unclear how far we can go with physics at the FPGA.
- ◆ Initially, we can start in pass-through mode.
- Then we can add background rejection.
- ◆ Later we can add filtering processes with the largest cross section.
- ◆ In case of problems with output traffic, we can add a selector for low cross section processes.
- ◆ The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.

Filter design proposal

Images from the Internet are for illustration of scale only.

Beam test with GEMTRD and eCAL

Beam setup at JLab Hall-D

• Tests were carried out using electrons with an energy of 3-6 GeV, produced in the converter of a pair spectrometer at the upstream of GlueX detector.

GEM-TRD prototype

- A test module was built at the University of Virginia
- The prototype of GEMTRD/T module has a size of 10 cm × 10 cm with a corresponding to a total of 512 channels for X/Y coordinates.
- The readout is based on flash ADC system developed at JLAB (fADC125) @125 MHz sampling.
- GEM-TRD provides e/hadron separation and tracking

region

Readout

GEMTRD clusters on the track

GEM-TRD can work as micro TPC, providing 3D track segments

GEMTRD offline analysis

- For data analysis we used a neural network library provided by root /TMVA package : MultiLayerPerceptron (MLP)
- All data was divided into 2 samples: training and test samples
- Top right plot shows neural network output for single module:
 - > Red electrons with radiator
 - > Blue electrons without radiator

Moving forward

- Offline analysis using ML looks promising.
- Can it be done in real time?
- Here are some of the possible solutions :
 - Computer farm.
 - > CPU + GPU
 - CPU + FPGA
 - FPGA only
- Steps to implement an FPGA solution:
 - Select FPGA for application in ML
 - > Export an offline trained neural network (NN) from root to C++ file.
 - Convert logical topology of NN coded in C++ to RTL structure of FPGA in VHDL or Verilog.
 - > Optimize the NN for application in FPGA.
 - > Create an I/O interface and configure FPGA.
 - > Perform the test with hardware.

Team:

F. Barbosa, L. Belfore (ODU), C. Dickover, C. Fanelli (MIT),

Y. Furletova, L. Jokhovets (Jülich Research Centre, Germany),

D. Lawrence, D. Romanov

Artificial Neural Network

Image: https://nurseslabs.com/nervous-system/

- FPGA Field Programmable Gate Array.
- It can perform logical operation in parallel

Inference on an FPGA

IRIS-HEP th Febraury 13, 2019 Dylan Rankin [MIT]

Image from: https://www.embeddedrelated.com/showarticle/195.php

FPGA test board for ML

- At an early stage in this project, as hardware to test ML algorithms on FPGA, we use a standard Xilinx evaluation boards rather than developing a customized FPGA board. These boards have functions and interfaces sufficient for proof of principle of ML-FPGA.
- The Xilinx evaluation board includes the Xilinx XCVU9P and 6,840 DSP slices. Each includes a hardwired optimized multiply unit and collectively offers a peak theoretical performance in excess of 1 Tera multiplications per second.
- Second, the internal organization can be optimized to the specific computational problem. The internal data
 processing architecture can support deep computational pipelines offering high throughputs.
- Third, the FPGA supports high speed I/O interfaces including Ethernet and 180 high speed transceivers that can operate in excess of 30 Gbps.

 Featuring the Virtex® UltraScale+** XCVU9P-L2FLGA2104E FPGA

Xilinx Virtex[®] UltraScale+™

Xilinx HLS: C++ to Verilog

The C/C++ code of the trained network is used as input for Vivado_HLS.

The Xilinx Vivado HLS (High-Level Synthesis) tool provides a higher level of abstraction for the user by synthesizing functions written in C,C++ into IP blocks, by generating the appropriate ,low-level, VHDL and Verilog code. Then those blocks can be integrated into a real hardware system.

56 }

```
1 //-----
 2 // float regex.sh:: converted to (tx t)
 4 //---- cxx file -----
 5 #include "trd ann.h"
6 #include <cmath>
7⊜ /*
8 |fx_t ann(int index,fx_t in0,fx_t in1,fx_t in2,fx_t in3,fx_t in4,fx_t in5,fx_t in6,fx_t in7
     input0 = (in0 - (fx t)1.96805)/(fx t)7.63362;
    input1 = (in1 - (fx t)4.75766)/(fx t)11.9138;
    input2 = (in2 - (fx t)4.40589)/(fx t)11.4831;
     input3 = (in3 - (fx t)4.24519)/(fx t)11.2533;
     input4 = (in4 - (fx t)4.30175)/(fx t)11.2252;
     input5 = (in5 - (fx_t)3.87414)/(fx_t)10.1781;
     input6 = (in6 - (fx_t)3.75959)/(fx_t)9.69367;
     input7 = (in7 - (fx t)3.84352)/(fx t)9.66213;
     input8 = (in8 - (fx_t)3.65047)/(fx_t)9.09565;
     input9 = (in9 - (fx t)5.96775)/(fx t)11.3203;
     switch(index) {
20
       return neuron0x32b4c90();
     default:
                                                        C++
       return (fx t)0.;
24
25 }
26 */
27@ fout t trdann(int index, finp t input[10]) {
     input0 = (fx t(input[0]) - (fx t)1.96805)/(fx t)7.63362;
     input1 = (fx_t(input[1]) - (fx_t)4.75766)/(fx_t)11.9138;
     input2 = (fx t(input[2]) - (fx t)4.40589)/(fx t)11.4831;
     input3 = (fx t(input[3]) - (fx_t)4.24519)/(fx_t)11.2533;
     input4 = (fx_t(input[4]) - (fx_t)4.30175)/(fx_t)11.2252;
     input5 = (fx t(input[5]) - (fx t)3.87414)/(fx t)10.1781;
     input6 = (fx t(input[6]) - (fx t)3.75959)/(fx t)9.69367;
     input7 = (fx t(input[7]) - (fx t)3.84352)/(fx t)9.66213;
     input8 = (fx_t(input[8]) - (fx_t)3.65047)/(fx_t)9.09565;
     input9 = (fx t(input[9]) - (fx t)5.96775)/(fx t)11.3203;
     switch(index) {
     case 0:
      return neuron0x32b4c90();
     default:
       return (fx t)0.:
43
                                Note: fixed point calculation
46@fx t neuron0x32bf850() {
     return input0;
500 fx t neuron0x32bf190() {
    return inputl;
                             Thanks to Ben Raydo for help.
54@fx t neuron0x32bf4d0()
55 return input2;
```

```
2// RTL generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC
 3// Version: 2019.1
 4// Copyright (C) 1986-2019 Xilinx, Inc. All Rights Reserved.
 8 timescale 1 ns / 1 ps
10 (* CORE_GENERATION_INFO="trdann,hls_ip_2019_1,{HLS_INPUT_TYPE=cxx,HLS_INPUT_FLOAT=1
12 module trdann (
           ap_clk,
14
          ap rst n,
          s axi AXILiteS AWVALID,
15
          s axi AXILiteS AWREADY,
16
17
          s_axi_AXILiteS_AWADDR
18
          s axi AXILiteS WVALID,
19
          s axi AXILiteS WREADY,
20
          s axi AXILiteS WDATA,
21
          s_axi_AXILiteS_WSTRB,
22
           s axi AXILiteS ARVALID
           s axi AXTLiteS ARREADY
                                                    Verilog
24
          s axi AXILiteS ARADDR,
25
          s_axi_AXILiteS_RVALID,
26
          s axi AXILiteS RREADY,
27
          s_axi_AXILiteS_RDATA,
28
          s_axi_AXILiteS_RRESP,
29
          s axi AXILiteS BVALID,
30
           s axi AXILiteS BREADY,
31
           s_axi_AXILiteS_BRESP,
32
           interrupt
33);
35 parameter
               ap ST fsm state1 = 23'd1;
36 parameter
               ap ST fsm state2 = 23'd2;
               ap_ST_fsm_state3 = 23'd4;
37 parameter
38 parameter
               ap ST fsm state4 = 23'd8;
39 parameter
               ap ST fsm state5 = 23'd16;
40 parameter
               ap ST fsm state6 = 23'd32;
41 parameter
               ap_ST_fsm_state7 = 23'd64;
42 parameter
               ap_ST_fsm_state8 = 23'd128;
43 parameter
               ap_ST_fsm_state9 = 23'd256;
44 parameter
               ap ST fsm state10 = 23'd512;
               ap ST fsm statel1 = 23'd1024;
45 parameter
               ap_ST_fsm_state12 = 23'd2048;
46 parameter
47 parameter
               ap ST fsm state13 = 23'd4096;
               ap ST fsm state14 = 23'd8192;
48 parameter
               ap_ST_fsm_state15 = 23'd16384;
49 parameter
               ap_ST_fsm_state16 = 23'd32768;
50 parameter
51 parameter
               ap ST fsm state17 = 23'd65536;
 52 parameter
               ap ST fsm state18 = 23'd131072;
53 parameter
               ap ST fsm state19 = 23'd262144;
               ap ST fsm state20 = 23'd524288;
54 parameter
55 parameter
               ap_ST_fsm_state21 = 23'd1048576;
```

DNN for GEMTRD as PID

• Using HLS significantly decreases development time. (at the cost of lower efficiency of use of FPGA resources)

Optimization with hls4ml package

• A package hls4ml is developed based on High-Level Synthesis (HLS) to build machine learning models in FPGAs.

GEMTRD PID network optimization

Full size neural network, accuracy-optimized.

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP Expression	- 	2	 _ 0	 - 24	- - -1
FIFO Instance	 - 19	- 692	 - 3737	-i	-i -i
Memory Multiplexer Register	2 -	- -	0 - 1532	0 36	-i -i
+	- 	694		16506	 0
Available SLR	1440	2280	788160	394080	320
Utilization SLR (%)	1	30	~0	4	0
Available	4320	6840	2364480	1182240	960
Utilization (%)	~0 	10	~0	1	0 j +

DSP utilization 10%

Size-optimized neural network

~0

~0

4320

7|

6840|

~0

2364480|

2|

1182240|

DSP utilization 2%

|Utilization SLR (%)

|Available

|Utilization (%)

DNN for GEMTRD Track fit

== Performance Estimates

+ Timing (ns):

+ Latency (clock cycles):

↑ Julili	•				
Lat	ency max	Inte	erval max	Pipeline Type	
•	•			function	+ +

- Tested DNN and LSTM for track fit.
- LSTM shows better performance but it is not yet supported in HLS4ML.
- Currently we use conventional algorithm for clustering and pattern recognition.
- We plan to replace it with GNN.

TRD FPGA processing test board

ML for Calorimeter e/pi separation

Classification	Last-layer activation	Loss function
single-label	softmax	categorical_crossentropy
multi-label (scores for candidates)	sigmoid	binary_crossentropy

Geant 4 simulation

Examples of events with e and π^- showers and μ^- passing through.

by D. Romanov

Calorimeter DNN implementation report

4			L		
Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP		3			
Expression	j – j	i – i	0	42	i – i
FIFO	-	-	-	-	-
Instance	-	208	931	4426	-
Memory	3	-	0	0	-
Multiplexer	-	-	-	36	-
Register	<u> </u> -	-	946	-	-
Total	3	211	1877	4504	0
Available SLR	1344	3072	864000	432000	320
Utilization SLR (%)	~0	6	~0	1	0
Available	5376	12288	3456000	1728000	1280
Utilization (%)	~0		~0	~0	0

DSP utilization 1%

Outlook

- An FPGA-based Neural Network application would offer online event preprocessing and allow for data reduction
 based on physics at the early stage of data processing.
- The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.
- FPGA provides extremely low-latency neural-network inference on the order of 100 nanoseconds.
- Open-source hls4ml software tool with Xilinx® Vivado® High Level Synthesis (HLS) accelerates machine learning neural network algorithm development.
- The ultimate goal is to build a real-time event filter based on physics signatures.

Figure 2.1: Feynman diagrams of the Quark Parton Model, QCD-Compton and Boson Gluon Fusion processes in NC DIS.

Published in 2007

Measurement of multijet events at low \$x_{Bj}\$ and low \$Q^2\$ with the ZEUS detector at HERA

T. Gosau

Backup

Test ML FPGA

Test tools:

- 1. Vivado SDK
- 2. Petalinux

```
ev=0 out=0.192 out0=0.197
ev=1 out=0.192 out0=0.197
ev=2 out=0.233 out0=0.236
ev=3 out=0.192 out0=0.197
ev=4 out=0.165 out0=0.169
ev=5 out=0.192 out0=0.196
ev=6 out=0.462 out0=0.470
ev=7 out=0.187 out0=0.191
```


C++ code for test: XTrdann ann; // create an instance of ML core.

```
XTrdann ann;
int ret = XTrdann Initialize(&ann, 0);
xil printf(" XTrdann Initialize =%d \n\r", ret);
XTrdann Start(&ann);
xil printf(" XTrdann Started \n\r");
for (int i = 0; i < 8; i++) {
         for (int k=0; k<10; k++)
             params[k]=data[i][k];
         out0=data[i][10]:
        ann_stat(&ann);
        int offset=0:
        int retw = XTrdann Write input r Words(&ann, offset, (u32*)&params[0], 10);
        xil_printf("Set Input ret=%d \n\r", retw);
        XTrdann_Set_index(&ann, 0);
        XTrdann Start(&ann);
        while (!XTrdann IsReady(&ann))
                ann stat(&ann);
        ann stat(&ann);
        int h1=out0; int d1=(out0-h1)*1000;
        float *xout; // *xin0, *xin1, *xin2;
        u32 iout = XTrdann_Get_return(&ann);
        xout = (float*) &iout;
        int whole = *xout;
        int thousandths = (*xout - whole) * 1000;
        if (whole==0 && thousandths<0)
                xil printf("xout=-%d.%03d out0=%d.%03d\n\r", whole, -thousandths,h1,d1);
        else
                xil_printf("xout=+%d.%03d out0=%d.%03d\n\r", whole, thousandths,h1,d1);
        //u32 in0 = XTrdann_Get_in0(\underline{\alpha}ann); xin0 = (float*) &in0; int hin0 = *xin0; int din0=(*xin0-hin0)*1000;
        //u32 inl = XTrdann Get inl(&ann); xinl = (float*) &inl; int hinl = *xinl; int dinl=(*xinl-hinl)*1000;
        //u32 in2 = XTrdann Get in2(&ann); xin2 = (float*) &in2; int hin2 = *xin2; int din2=(*xin2-hin2)*1000;
        //xil printf(" XTrdann in0=%d.%03d", hin0,din0);
        //xil printf(" in1=%d.%03d ",hin1,din1);
        //xil printf(" in2=%d.%03d ",hin2,din2);
        xil printf(" ev=%d out=%d.%03d out0=%d.%03d\n\r",i,whole,thousandths,h1,d1);
```

Modern FPGA

- Modern FPGAs have DSP slices specialized hardware blocks placed between gateways and routers that perform mathematical calculations.
- The number of DSP slices can be up to 6000-12000 per chip.
- In addition, they often have ARM cores implemented using non-programmable gates.

Modern FPGA: lots of hard, not-field-programmable gates

Image from: https://www.embeddedrelated.com/showarticle/195.php

Compute Node (PXD, Belle II)

- The pixel detector of Belle II with its ~ 8 million channels will deliver data at rate of 22 Gbytes/s for a trigger rate of 30 kHz
- A hardware platform capable of processing this amount of data is the ATCA based Compute Node. (Advanced Telecommunications Computing Architecture).
- A single ATCA crate can host up to 14 boards interconnected via a full mesh backplane.
- Each AMC board is equipped with 4 Xilinx Virtex-5 FX70T FPGA.

ADC based DAQ for PANDA STT

Level 0 Open VPX Crate

ADC based DAQ for PANDA STT (one of approaches):

- 160 channels (shaping, sampling and processing) per payload slot, 14 payload slots+2 controllers;
- totally 2200 channels per crate;
- time sorted output data stream (arrival time, energy,...)
- noise rejection, pile up resolution, base line correction, ...

Single Virtex7 FPGA

- 160 Amplifiers;
- 5 connectors for 32pins samtec cables

- All information from the straw tube tracker is processed in one unit.
- Allows to build a complete STT event.
- This unit can also be used for calorimeters readout and processing.

Powerful Backplane up to 670 GBs

Unified hardware solution (ATCA or OpenVPX)

